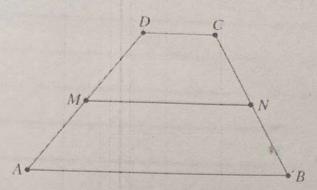
Exercícios Propostos¹

1. (1,5 pt.) Use vetores para mostrar que o segmento que une os pontos médios M e N dos lados não paralelos de um trapézio ABCD é paralelo às bases, e seu comprimento é a média aritmética das bases.



- 2. (2,0 pt.) Sejam $\vec{u} = (1, -1, 3), \vec{v} = (2, 1, 3) \in \vec{w} = (-1, -1, 4)$ em uma base ortonormal.
 - (a) (0,5 pt.) Calcule as coordenadas dos vetores $\vec{u} 2\vec{v}$ e $\vec{u} + 2\vec{v} 3\vec{w}$.
 - (b) (0,5 pt.) Verifique se \vec{u} é combinação linear de \vec{v} e \vec{w} .
 - (c) (1,0 pt.) Escreva $\vec{t} = (4,0,13)$ como combinação linear de \vec{u} , \vec{v} e \vec{w} .
- 3. (2,5 pt.) São dados os pontos $A=(1,2,-1),\ B=(0,1,1)$ e C=(2,0,0) em um sistema de coordenadas ortogonal.
 - (a) (0,5 pt.) Os pontos $A, B \in C$ são colineares? Justifique sua resposta.
 - (b) (1,0 pt.) Determine uma equação na forma simétrica da reta r que contém o ponto A e é paralela ao segmento formado pelos pontos B e C.
 - (c) (1,0 pt.) Mostre que os pontos A, B e C são vértices de um triângulo equilátero em \mathbb{R}^3 e determine sua área.
- . (3,0 pt.) São dados os pontos A=(1,0,1) e os vetores $\vec{u}=(1,1,1)$ e $\vec{v}=(-3,0,0)$ em um sistema de coordenadas ortogonal.
 - (a) (1,0 pt.) Calcule o produto vetorial $\vec{u} \times \vec{v}$, o produto escalar $\vec{u} \cdot \vec{v}$ e o ângulo θ entre esses vetores. Com base nos resultados, responda se o conjunto $\{\vec{u}, \vec{v}\}$ é linearmente dependente ou independente.
 - (b) (1,0 pt.) Determine uma equação geral do plano π que passa por A e é paralelo aos vetores \vec{u} e \vec{v} .
 - (c) (1,0 pt.) Dada a reta $r: X = (1,4,3) + \lambda(0,-1,1), \lambda \in \mathbb{R}$, encontre a posição relativa entre r e o plano π .
- (1,0 pt.) Obtenha a tripla de coordenadas do vetor que tem norma $\sqrt{3}$ e é ortogonal a $\vec{u} = (1,1,0)$ e a $\vec{v} = (-1,0,1)$.